Category Archives: Kelas XI Semester Ganjil

Kelas XI Semester Ganjil

Pengaturan Kecepatan Silinder

Pengaturan kecepatan silinder yang dimaksudkan disini adalah :

  • Mengurangi kecepatan
  • Menambah kecepatan

Mengurangi Kecepatan Silinder :

Kecepatan silinder dapat dikurangi dengan memasang katup kontrol aliran. Untuk mengatur kecepatan silinder agar lebih lambat dapat menggunakan katup kontrol aliran satu arah.

silinder01

Gambar Simbol, gambar potongan dan benda dari katup kontrol aliran satu arah

Ada dua kemungkinan pemasangan katup kontrol aliran satu arah :

  • Pengaturan udara masuk,
  • Pengaturan udara pembuangan

Mengurangi Kecepatan Silinder Kerja Tunggal

Pada silinder kerja tunggal, pengurangan kecepatan gerakan maju hanya efektif dilakukan oleh pengaturan udara masuk. Pengurangan kecepatan silinder dilakukan dengan menggunakan katup kontrol aliran satu arah seperti pada gambar berikut ini.

slinder02

Gambar  Pengurang an Kecepatan Gerakan Maju

silinder03

Gambar  Pengurangan Kecepatan Gerakan Mundur

Pengurangan kecepatan gerakan maju dan mundur dengan pengaturan secara terpisah dilakukan seperti pada gambar di bawah ini :

silinder04

Gambar  Pengurangan kecepatan gerakan maju dan mundur

b) Mengurangi Kecepatan Silinder Kerja Ganda

Pada silinder kerja ganda memungkinkan melakukan pengaturan aliran udara masuk dan udara buangan untuk mengurangi kecepatan gerakan maju dan mundur. Katup buangan cepat dapat digunakan untuk menambah kecepatan maju maupun mundur. Pengurangan kecepatan silinder dengan pengaturan terpisah untuk gerakan maju dan mundur seperti gambar berikut :

silinder05

Gambar  Pengurangan kecepatan dengan mengatur udara buangan

Menambah Kecepatan Silinder

Menambah kecepatan silinder dengan menggunakan katup buangan – cepat. Pemasangan katup ini dekat dengan silinder, agar udara buangan cepat keluar dan kecepatan silinder bertambah. Gambar di bawah adalah simbol, potongan dan benda dari katup kontrol aliran satu arah.

silinder06

Gambar  Simbol, potongan dan benda dari katup buang cepat

Menambah Kecepatan Silinder Kerja Tunggal

Mempercepat kecepatan silinder kerja tunggal dilakukan dengan memasang katup buangan cepat di masukan lubang silinder kerja tunggal. Mempercepat hanya dapat dilakukan untuk gerakan mundur, sedangkan untuk gerakan maju tidak dapat dilakukan karena silinder kerja tunggal hanya mempunyai satu lubang udara masukan. Penambahan kecepatan gerakan mundur dapat dilakukan seperti gambar di bawah ini :

silinder07

Gambar  Penambahan kecepatan gerakan mundur

Menambah Kecepatan Silinder Kerja Ganda Pada silinder kerja ganda mempercepat kecepatan dapat dilakukan untuk gerakan maju atau mundur. Gambar di atas menunjukkan rangkaian untuk mempercepat kecepatan gerakan maju dan mundur.

silinder08

Gambar  Penambahan kecepatan gerakan maju

silinder09

Gambar  Penambahan kecepatan gerakan mundur

Rangkaian Pada Papan Peraga Untuk merealisasikan pengaturan kecepatan silinder seperti pada gambar – gambar di atas  sampai   diperlukan peralatan pneumatik sebagai berikut :

silinder10

Komponen – komponen yang dipergunakan untuk merealisasikan kontrol pneumatik dapat dilihat pada tabel berikut :

 

silinder11

Lembar Pekerjaan Peserta Didik.

Merangkai Rangkaian Pengaturan Kecepatan Silinder Kerja Tunggal.

1.Siapkan gambar rangkaian sesuai perintah tugas dengan jalan melengkapi gambar kerja

  1. Bagaimana cara mengatur kecepatan silinder kerja tunggal ?
  2. Bagaimana cara mengatur kecepatan silinder kerja ganda?
  3. Sebutkan komponen – komponen yang ada pada gambar berikut ini.
  4. Apa fungsi katup 1V2?
  5. Apa fungsi katup 1V3

silinder12

Praktekkan dengan software Fluidsim

 

 

Gambar rangkaan pneumatik satu silinder

Sistem pnumatik meliputi semua komponen mesin atau peralatan, yang beroperasi secara pneumatik atau menggunakan proses-proses pneumatik. Sistem dasar kendali pnumatik meliputi piranti penyedia sumber energi udara kempa yang terdiri dari kompresor udara, sistem filter udara, sistem pengering udara, dan sistem pengatur tekanan udara.  elemen input untuk mengendalikan sistem, berupa katub tombol tekan (pushbutton valve) dan katub sensor. Selanjutnya berbagai jenis katub pengarah dan pengatur tekanan udara, dan yang terakhir berupa aktuator (cylinder).

bagian pneumatik

  • aircompressor, menghasilkan udara kempa secara kontinyu.
  • intakefilter berfungsi menahan kotoran udara sebelum masuk ke sistem
  • dryer berfungsi menyerap uap air di udara (moisture)
  • receiver tank sebagai reservoar udara kempa, pressure regulator mengatur dan menjaga tekanan udara tetap konstan
  • , valve mengontrol aliran udara kempa
  • pneumatic cylinder sebagai aktuator yang mengubah energi udara menjadi energi mekanik

SIMBOL-SIMBOL UMUM PENGGUNAAN UDARA BERTEKANAN DAN KATUP UDARA

tabel01tabel2tabel3

2.1.3 Pneumatic Actuator

Actuators merupakan elemen aktivasi(powering element) di dalam sistem control pnumatik. Actuator melakukan banyak pekerjaan dalam hal membangkitkan berbagai pergerakan misalnya silinder dan motor pnumatik.

Ada tiga cara mengontrol actuator, yaitu:

  •  pneumatics
  •  hydraulics
  •  electrics

Single Acting Cylinder

Single acting cylinder hanya dapat menghasilkan kerja dengan satu arah, sehingga tekanan udara hanya diperlukan dari satu arah. Untuk menggerakkan piston ke arahi sebaliknya digunakan pegas atau daya tekan dari luar.

tabel4

konstruksi single acting cylinder.

tabel5

Gambar 2.7 Control Single Acting Cylinder

Batang piston silinder kerja tunggal bergerak keluar pada saat silinder menerima udara bertekanan. Jika udara bertekanan dihilangkan, secara otomatis piston kembali lagi ke posisi awal.

Posisi Awal

Posisi awal  didefinisikan sebagai posisi normal dari sistem. Semua bagian terhubung dan tombol tidak ditekan oleh operator. Udara bertekanan dari catu daya ditutup, piston masuk ke dalam oleh dorongan pegas kembali. Lubang masukan silinder dihubungkan ke lubang pembuangan melalui katup. Pengiriman bertekanan diputus oleh katup.

Tombol ditekan

Menekan tombol tekan berarti memindahkan posisi katup 3/2, melawan pegas katup.

Tombol dilepas

setelah tombol dilepas, maka pegas di katup mengembalikan katup ke posisi awal dan batang piston silinder kembali masuk. Jika tombol tekan diaktifkan lau dilepas sebelum silinder keluar penuh, piston masuk kembali secara langsung, maka ada hubungan langsung antara pengoperasian tombol tekan dan posisi silinder.

Tugas :

  1. Tuliskan piranti sistem dasar kendali pneumatik ?
  2. Tuliskan elemen input sistem pengendali sistem ?.
  3. Tuliskan 3 cara pengontrolan aktuator ?.
  4. Buatlah sketsa  di kertas gambar :SIMBOL-SIMBOL UMUM PENGGUNAAN UDARA BERTEKANAN DAN KATUP UDARA

Penyiapan dan distribusi Udara Kempa

Penyaluran udara kempa untuk keperluan sistem pnumatik harus diperhitungkan secara cermat dan dipelihara dalam kualitas prima. Dalam prakteknya, jumlah dan kualitas udara yang akan dipampatkan merupakan suatu hal yang sangat penting. Udara yang terkontaminasi, masih banyak mengandung polutan, seperti partikel debu, sisa-sisa oli pelumas dan uap air (moisture)  seringkali dapat menyebabkan terjadinya gangguan pada sistem pnumatik dan merusak komponen pnumatik. Oleh Karena itu, sistem pnumatik memerlukan penanganan udara kempa yang sangat presisi, melalui penyaringan (filtering) dan pengeringan (drying). Dengan sistem penyaringan yang cermat akan dapat mengatasi partikel debu dan kotoran lainnya. melalui sistem pengeringan yang baik, dapat mengurangi kandungan uap air yang terbawa masuk ke dalam kompressor

Untuk menyediakan continuing performance dari sistem kontrol pnumatik dan working element yang digunakannya, perlu ada jaminan bahwa udara kempa yang akan digunakan untuk sistem pnumatik harus memenuhi persyaratan teknis sebagai berikut:

  • Tekanan kerja sesuai standar
  • Udara kempa harus kering tidak mengandung uap air, dan
  • Bersih dari kotoran.

Bila kondisi tersebut tidak dapat dipenuhi, maka keadaan yang lebih buruk atau degenerasi akan muncul lebih cepat. Sebagai dampaknya adalah terjadi down time pada sistem dan biaya pemeliharaan meningkat.

Pembangkitan udara kempa dimulai dari kerja kompresor udara. Udara kempa mengalir melalui berbagai komponen sebelum akhirnya mencapai elemen akhir yang merupakan elemen aktuasi (silinder atau motor pnumatik). Komponen berikut perlu dipertimbangkan ketika akan menyiapkan penyediaan udara kempa untuk keperluan sistem pnumatik, yaitu;

  • Inlet filter
  • Air compressor
  • Air reservoir
  • Air Dryer
  • Air filter with water separator
  • Pressure regulator
  • Air lubricator
  • Drainage points

Upaya penyiapan udara kempa yang buruk dan seadanya, pasti akan cenderung menimbulkan malfunction dan mengakibatkan seal dan bagian-bagian bergerak cepat aus, oli masuk ke dalam katub, silencer terkontaminasi, korosi pada pipa, katub dan silinder, serta menguras pelumasan. Pada kasus kebocoran, maka pelepasan udara kempa yang terkontaminasi akan dapat mencemari produk (makanan).

Pada umumnya komponen pnumatik didisain menerima tekanan kerja normal antara 800 hingga 1000 kPa (8 – 10 bar). Pengalaman praktek menunjukkan, untuk alasan ekonomi, tekanan operasi sebesar 6 bar dapat digunakan. Biasanya rugi tekanan berkisar 10 hingga 50 kPa (0,1 – 0,5 bar) yang disebabkan oleh berbagai kondisi, misalnya adanya bengkokan pipa dan panjang pipa, tahanan pipa dan adanya kebocoran. Sehingga untuk mengatasi adanya kerugian tekanan, maka udara kempa yang tersimpan di dalam kompresor harus berikisar 6,5 – 7 bar.

Sistem pnumatik menggunakan udara kempa untuk menghasilkan gerakan mekanik. Untuk mengurangi adanya fluktuasi tekanan, dan memberikan jaminan kualitas penaluran udara kempa, dipasang sebuah reservoir (receiver tank). Kompresor mengisi reservoir yang disediakan sebagai storage tank. Ukuran diameter pipa distribusi udara harus dipilih sedemikian sehingga rugi tekanan tidak boleh melebihi 10 kPa (0,1 bar).

Dari berbagai piranti dalam sistem pnumatik, yang perlu mendapat perhatian lebih adalah compressor, Filter & dryer.

Tipe Kompresor Udara

Pemilihan tipe kompresor tergantung beberapa aspek, yaitu jumlah udara kempa yang harus disediakan, tekanan udara kempa, kualitas dan kebersihan udara kempa, serta tingkat kekeringan udara kempa.

  • Kompresor torak, merupakan salah satu tipe kompresor yang paling populer dan memberikan rentang tekanan dan delivery rate yang luas. Untuk pemakaian tekanan yang lebih tinggi dapat digunakan multistage system. Rentang tekanan optimum yang dihasilkan oleh kompresor torak adalah Single stage : hingga 4 bar Double stage : hingga 15 bar Multistage : di atas 15 bar
  • Kompresor Diafragma, merupakan keluarga kompresor torak, tetapi dilengkapidengan diafragma untuk memisahkan antara piston dan compressor chamber. Keuntungan sistem ini minyak pelumas (oli) tidak dapat terbawa oleh aliran udara kempa. Digunakan pada industri makanan, farmasi dan kimiawi.
  • Kompresor Rotari, kompresor ini menggunakan rotating elemen untuk menaikkan tekanan udara. Selama proses kompresi,compressor chamber selalu mengecil secara kontinyu.
  • Kompresor Flow, dibuat dalam bentuk axial dan radial. Aliran udara digerakkan oleh turbin atau sudu-sudu. Energi kinetik diubah menjadi energi tekanan. Pada kasus axial compressor, udara berakselerasi pada arah axial karena efek pergerakan sudu-sudu.

Air Service Unit

Air service unit merupakan kombinasi dari beberapa komponen untuk memberikan jaminan kualitas udara kempa pada sistem pnumatik, terdiri dari 3 komponen, yaitu:

  • Compressed air filter
  • Compressed air regulator
  • Compressed air regulator (optional)

Compressed air filters adalah alat penyaring yang berfungsi mengambil atau memisahkan seluruh kontaminan dan uap air yang terkandung di dalam udara kempa yang dihasilkan oleh kompresor udara. Udara kempa dari kompresor yang masih mengandung uapair masuk ke filter bowl melalui guide slot. Partikel liquid dan partikel kotoran dipisahkan secara sentrifugal. Akibat adanya gaya centrifugal, maka seluruh liquid dan partikel debu dan kotoran lain akan terlempar keluar dan terkumpul di bagian bawah filter bowl. Selanjutnya udara kempa yang sudah bersih dari kontaminat, disalurkan ke sistem filter berikutnya yang disebut sintered filter. Sintered filter akan mengeluarkan partikel debu yang masih tersisa.

filter

Pemeliharaan Filter

  • Air kondensat yang terkumpul harus dibuang sebelum melebihi maksimum level yang diinginkan, kalau tidak air kondensat tersebut akan kembali masuk ke
  • dalam air stream. Frekuensi perawatan filter, tergantung pada kualitas udara dan tingkat kontaminan dari udara tekan. Semakin jelek kualitas udara tekan maka semakin sering pula filter harus dibersihkan atau diganti. Deposit condensation yang terkumpul di bagian bawah filter bowl harus di keluarkan melalui drain screw, bila depositnya telah mencapai level maksimum. Bila kandungan uap air sangat tinggi, maka disarankan untuk menggunakan automatic water separator.
  • Tip Regular Maintenance:
  •  Compressed Air Filter Condensate level harus diperiksa secara regular. Upayakan, jangan sampai melebihi level indication pada sight glass, agar deposite condensate tidak dapat tertarik masuk ke dalam compressed air line. Bukalah drain screw yang terdapat pada sight glass untuk mengeluarkan deposite condensate. Kemudian filter cartridge yang ada di dalam filter harus juga dibersihkan.
  • Pressure Regulating Valve Piranti ini tidak memerlukan perawatan khusus, bila pemeliharaan compressed air filter dilakukan dengan baik.
  • Compressed Air Regulator : Periksa oil level pada sight glass dan bila perlu tambah oil sehingga mencapai level yang ditentukan. Plastic filter dan lubricator bowl tidak boleh dibersihkan dengan bahan kimiawi trichloroethylene. Hanya mineral oil yang boleh digunakan.

Tugas :

1. Perhatikan pernyataan : “Setiap fluida yang melalui sebuah saluran (pipa) dikatakan bahwa jumlah aliran yang melalui saluran yang berbeda-beda luas penampangnya akan selalu tetap sama pada setiap titik”. Berikan bukti secara konsep dan persamaan yang mendukung kebenaran pernyataan di atas.

2. Sebutkan minimal 5 (lima) keuntungan dan kerugian pemakaian pneumatik !

3. Hal-hal apa sajakah yang harus diperhatikan untuk mendapatkan udara yang berkualitas?

4.Untuk mempersiapkan udara bertekanan, elemen-elemen apa sajakah yang diperlukan?

5. Sebutkan jenis-jenis kompresor !.

6. Sebutkan kriteria pemilihan kompresor !

7.Kompresor jenis apa saja yang dapat menghasilkan udara bertekanan bebas minyak ?

Listrik Dinamis

A. Arus Listrik

Arus listrik adalah jumlah muatan yang mengalir melalui penampang penghantar tiap satuan waktu. Besaran ini dilambangkan dengan I dan dinyatakan dalam satuan ampere. Jika besar jumlah muatan yang mengalir q dalam waktu t sekon maka besar arus listrik secara matematis dapat ditulis :

01

Keterangan :

I = kuat arus (A)

q = muatan (C)

t = waktu (s)

Jika terdapat N elektron yang mengalir , total muatan q adalah :

q = N e

Keterangan :

q = muatan listrik (C)

N = jumlah muatan

e = 1,6 x 10-19 / C

Rapat arus listrik didefinisikan sebagai besar arus yang mengalir dalam tiap  satuan luas penampang aliran  dan dilambangkan dengan J. Jika luas penampang aliran adalah A, rapat arus listrik dapat dituliskan dengan :

01

Keterangan :

J = rapat muatan (A/m²)

I = Arus listrik (A)

A = luas penampang penghantar (m²)

Contoh soal arus listrik

  1. Sebuah penghantar tembaga memiliki luas penampang 0.5 mm² di aliri arus listrik 1 A dalam waktu 5 sekon, jika  e = 1,6 x 10-19 / C. Hitunglah :

a. Muatan listrik

b. Jumlah muatan

c. rapat muatan

B. Hambatan dan hambat jenis

  1. Hambatan

Setiap konduktor memiliki kemampuan untuk menghantarkan arus listrik. Jika kedua penghantar diberi beda potensial yang sama besar pada kedua ujung tiap penghantar , besar arus listrik yang mengalir pada tiap penghantar akan berbeda. Hambatan pada suatu penghantar didefinisikan sebagai perbandingan antaravbeda potensial (V) pada kedua ujung penghantar dengan besar kuat arus  (I)yang melewati pengntar. Atau ditulis dengan persamaan :

01

Keterangan :

R = hambatan (Ω / ohm)

V = tegangan / beda potensial (volt)

I = arus listrik (volt)

2. Hambatan Jenis

Sesuatu yang berhubungan dengan hambatan dan merupakan karakteristik bahan merupakan hambatan jenis bahan. Hambatan jenis bahan ini didefinisikan sebagai perbandingan antara medan listrik E terhadap rapat arus Jdi dalam suatu bahan atau ditulis :

01

sedangkan untuk hambatan jenis dapat ditulis dengan persamaan :

01

keterangan :

R = hambatan sepotong kawat (ohm)

l = panjang penghantar (m)

A = luas penampang (m²)

ρ = hambatan jenis (ohm. m)

Contoh soal hambatan :

2. Sebuah penghantar memiliki luas penampang 0.5 mm² dan panjang nya 10 meter dialiri arus listrik sebesar 2 A dan tegangan 10 volt. Hitunglah berapa besar hambatan dan hambat jenisnya ?.

3. Dua kawat A dan B sejenis, panjang kawat B = 2 kali panjang kawat A sedang luas penampangnya ½ kali luas penampang kawat A. Hitunglah perbandingan tahanan kawat A dan B!

Disamping faktor-faktor diatas, hambat jenis kawat dipengaruhi oleh suhu. Dirumuskan :

01

Dimana:

rt = hambat jenis setelah suhu dinaikkan ( Ωm)

ro = hambat jenis mula-mula ( Ωm)

a  = koefisien suhu ( o C-1 )

∆t = perubahan suhu (o C)

Sehingga hambatan kawat dapat dirumuskan:

01

Dimana:

Rt = hambat jenis setelah suhu dinaikkan (Ωm)

Ro = hambat jenis mula-mula (Ωm)

a = koefisien suhu ( o C-1 )

t = perubahan suhu (o C)

Dari uraian diatas dapat disimpulkan hambatan suatu penghantar bergantung pada:
1. panjang penghantar

2. luas penampang penghantar
3. hambatan jenis penghantar
4. suhu penghantar

4. Diketahui hambatan jenis suatu kawat pada suhu 25 oC sebesar 10-6 Ωm dengan koefisien suhu 0,005/ o C. Maka hambat jenis logam tersebut pada suhu 125 o C adalah…..

Rangkaian Arus Searah

  1. Hukum Kirchoff

Hukum Kirchoff berbunyi :

“Jumlah arus listrik yang memasuki percabangan sama dengan jumlah arus listrik yang meninggalkan percabangan”.

01

Secara umum rumus hukum Kirchhoff 1 dapat dituliskan sebagai berikut:

01

l_1 = l_2 + l_3

Keterangan :

ΣImasuk = Jumlah arus masuk

ΣIkeluar = jumlah arus keluar

 

Rangkaian resistor

a. Rangkaian seri

Rangkaian resistor disebut seri apabila beberapa resistor disambung / dirangkai secara berurutan atau berderet. Bentuk rangkaian resistor seri yaitu ujung resistor pertama disambung dengan pangkal resistor kedua dengan pangkal resistor yang lain dan seterusnya sesuai dengan nilai yang diinginkan.

Untuk menghitung hambatan pengganti (Rs) suatu rangkaian resistor yaitu dengan menjumlahkan nilai masing-masing hambatan resistor pada rangkaian tersebut.

Rumus :

01

Keterangan :
Rs = Hambatan pengganti pada rangkaian seri (Ω)
R1 = Nilai hambatan pada resistor 1(Ω)
R2 = Nilai hambatan pada resistor 2(Ω)
R3 = Nilai hambatan pada resistor 3(Ω)
Rn = Nilai hambatan pada resistor paling akhir pada suatu rangkaian (Ω)

Contoh soal :

01

Tiga buah resistor akan dirangkai secara seri, masing-masing nilai resistor tersebut adalah R1 = 10Ω, R2 = 47Ω, R3 = 100Ω. berapakah nilai dari hambatan pengganti rangkaian tersebut?
Diketahui : R1 = 10Ω
R2 = 47Ω
R3 = 100Ω
Ditanya    : Rs = ?
Jawab       :

b. Rangkaian Resistor Paralel (Jajar)

Rangkaian resistor dapat disebut rangkaian paralel apabila beberapa resistor dirangkai secara berjajar. Bentuk rangkaian resistor paralel adalah pangkal resistor pertama disambung dengan pangkal resitor kedua dan seterusnya sesuai dengan nilai yang diinginkan.

Nilai hambatan pengganti (Rp) selalu lebih kecil dari nilai resistor-resistor yang ada pada rangkaian resistor paralel, dapat juga ditulis dengan :

Rumus :

01

Keterangan :
Rp = Nilai hambatan pengganti pada rangkaian paralel (Ω)

Contoh soal :

01

tiga buah resistor akan dirangkai secara paralel, nilai masing-masing resistor tersebut adalah R1 = 10Ω, R2 = 47Ω, R3 = 100Ω, berapakah nilai hambatan pengganti pada rangkaian paralel tersebut?
Diketahui : R1 = 10Ω
R2 = 47Ω
R3 = 100Ω
Ditanya    : Rp = ?
Jawab       :

1. Rangkaian Resistor Seri-paralel
Contoh soal :
01
Berapakah nilai hambatan pengganti pada rangkaian tersebut?
Diketahui : R1 = 10Ω
R2 = 47Ω
R3 = 100Ω
Ditanya    : Rt = ?
Jawab       :

Hukum Kichoff II

Bunyi hukum Kirchhoff 2 adalah sebagai berikut:

“Pada setiap rangkaian tertutup, jumlah beda potensialnya harus sama dengan nol”

Secara umum rumus hukum Kirchhoff 2 dapat dinyatakan sebagai berikut:

\Sigma IR + \Sigma \epsilon = 0

Contoh Soal 1:

Perhatikan gambar rangkaian tertutup dibawah ini!

contoh soal hukum kirchhoff

Apabila R_1 = 2 \Omega, R_2 = 4 \Omega dan R_3 = 6 \Omega, maka kuat arus yang mangalir pada rangkaian adalah …

Jawaban:

Kita terlebih dahulu tentukan arah arus dan arah loop, dalam hal ini kita akan menentukan arah loop searah dengan arah jarum jam.

arah loop rangkaian kirchhoff 2

Dengan menerapkan hukum Kirchhoff 2, kita akan dapatkan nilai arus listrik sebagai berikut:

\Sigma IR + \Sigma \epsilon = 0

i \cdot R_1 - E_1 + i \cdot R_2 + i \cdot R_3 + E_2 = 0

i (R_1 + R_2 + R_3) + E_2 - E_1 = 0

i (2 \Omega + 4 \Omega + 6 \Omega) + 3V - 9V = 0

12i - 6V = 0

12i = 6V maka i = 0.5 A

Rangkaian Sumber Tegangan

Pada dasarnya, Baterai dapat dirangkai secara Seri maupun Paralel. Tetapi hasil Output dari kedua Rangkaian tersebut akan berbeda. Rangkaian Seri Baterai akan meningkatkan Tegangan (Voltage) Output Baterai sedangkan Current/Arus Listriknya (Ampere) akan tetap sama. Hal ini Berbeda dengan Rangkaian Paralel Baterai yang akan meningkatkan Current/Arus Listrik (Ampere) tetapi Tegangan (Voltage) Outputnya akan tetap sama. Untuk lebih jelas, mari kita melihat Rangkaian Seri dan Paralel Baterai di bawah ini :

01

4 buah Baterai yang masing-masing bertegangan 1,5 Volt dan 1.000 miliampere per jam (mAh) akan menghasilkan 6 Volt Tegangan  tetapi kapasitas arus Listriknya (Current) akan tetap yaitu 1.000 miliampere per jam (mAh).

Vtot = Vbat1 +Vbat2 + Vbat3 + Vbat4
Vtot = 1,5V + 1,5V + 1,5V + 1,5V
Vtot = 6 V

Rangkaian Paralel Baterai

01

Rangkaian Paralel yang terdiri dari 4 buah Baterai. Tegangan yang dihasilkan dari Rangkaian Paralel adalah sama yaitu 1,5 Volt tetapi Current atau kapasitas arus listrik yang dihasilkan adalah 4.000 mAH (miliampere per Jam) yaitu total dari semua kapasitas arus listrik pada Baterai.

Untuk baterai yang dirangkai paralel besarnya baterai keseluruhan sama dengan besarnya masing  masing baterai sedangkan arus  totalnya sama dengan jumlah arus masing  masing baterai

tot = Ibat1 +Ibat2 + Ibat3 + Ibat4
Itot = 1.000mAh + 1.000mAh + 1.000mAh + 1.000mAh
Itot = 4.000mAh

Soal – soal :

  1. Perhatikan gambar berikut :

01

Jika I1 sebesar 2A dan I3 sebesar 4 A berapakah besarnya arus yang mengalir pada I3 ?.

2. tiga buah hambatan yang masing  masing besarnya 10 ohm, 30 ohm dan 60 ohm . Hitunglah besarnya hambatan penggantinya jika dirangkai secara :

a. seri

b. paralel

3. Perhatikan gambar di bawah ini :

01

Jika R1 = 30 ohm, R2 = 20 ohm dan R3 = 50  ohm . Hitunglah besarnya hambatan totalnya.

4.  Perhatikan gambar berikut

01

Jika E1 = 6 volt dan E2 = 12 volt serta besarnya R1 = 2 ohm, R2 = 4 ohm , R3 =6 ohm. Hitunglah besarnya arus yang mengalir pada rangkaian di atas.

5. 3 buah baterai yang besarnya masing  masing 9 volt, 6 volt dan 4,5 volt dihubungkan dengan sebuah beban . berapakah tegangan totalnya jika baterai tersebut dirangkai secara :

a. seri

b. paralel

 

Listrik Statis

1. Muatan Listrik

Listrik statik adalah muatan listrik yang berada dalam keadaan diam. Gejala listrik statik ini dapat diamat i pada penggaris plastik yang digosok gosokkan pada rambut yang menarik potongan potongan kertas kecil.

a. Sifat-sifat Muatan Listrik

1)  Muatan listrik dibagi dua jenis yaitu muatan positif dan muatan negatif.
2)  Muatan listrik sejenis tolak-menolak dan muatan listrik tak sejenis tarik-menarik.

b. Terjadinya Muatan Listrik

Benda-benda menjadi bermuatan karena muatan negatif
(elektron) dipindahkan dari satu benda ke benda lainnya. Muatan elementer adalah 1 e = 1,60 . 10-19  C.

1) Sebuah benda dapat dimuati listrik misalnya dengan cara menggosokkan benda lain. Jika batang ebonit digosok dengan kain wol, maka ebonit bermuatan listrik negatif hal ini dikarenakan elektron pada kain wol berpindah ke ebonit, sedangkan jika kaca digosok dengan kain sutra, maka kaca bermuatan listrik positif kejadian ini disebabkan elektron pada kaca berpindah ke kain sutra.
2) Konduktor adalah zat yang mudah dilalui/ menyimpan muatan listrik. Contoh: besi, tembaga.
3)  Isolator adalah zat yang sulit dilalui/menyimpan muatan listrik. Contoh: karet, kaca.

2. Muatan Coulomb

Besarnya gaya tarik dan gaya tolak antara muatan listrik, dinyatakan pertama kali oleh Charles Augustin Coulomb. Bunyi hukum Coulomb: “Besarnya gaya tarik-menarik atau tolak menolak antara dua benda bermuatan listrik sebanding dengan muatan masing-masing dan
berbanding terbalik dengan kuadrat jarak kedua muatan tersebut.”

01

dengan

F = gaya tarik/tolak (N)

q1 = besarnya muatan listrik 2 (C)

q = besarnya muatan listrik 1 (C)
r = jarak antara dua muatan
dimana

k = 9.109  Nm2/C2

Hukum Coulomb merupakan persamaan vektor, sehingga arah gaya tarik/tolak sesuai dengan  interaksi muatan kedua benda.

01

3. Medan listrik
Medan l istr ik adalah ruang diseki tar benda bermuatan listrik yang masih memiliki gaya listrik. Garis- garis medan listrik disebut garis gaya
a.  Garis-garis gaya lebih rapat pada daerah dengan medan listrik tinggi dan lebih renggang pada daerah dengan medan  listrik rendah.
b. Garis-gar is gaya t idak pernah berpotongan dan selalu keluar dari muatan posit if dan masuk ke muatan negat if.

01

Gambar : garis gaya listrik

4. Kuat Medan Listrik
Kuat medan l istrik adalah besarnya gaya tarik menarik atau tolak-menolak dibagi besar muatan di titik itu.  Misal: anggap titik merupakan muatan positif

01

dengan
k = 9.109  Nm2/C2
q = rnuatan listrik (C)

r =  jarak kedua muatan (m)
E = kuat medan listrik (N/C)

01

Gambar : kuat medan listrik

q = positif  maka menjauhi q
q = negative maka mendekati q
Untuk muatan titik yang tersebar, kuat medan listrik di suatu  t i t ik akibat muatan-muatan adalah penjumlahan vektor dari medan listrik akibat tiap muatan.

01

Contoh Soal
Berapa besar muatan agar pada titik yang berjarak 25 cm dari muatan inti terdapat medan listrik sebesar 1,2 N/C !
Pembahasan:

01

01

01

5. Energi Potensial dan Potensial Listrik

a. Energi Potensial (Ep )

Energi potensial sebuah muatan di suatu  titik adalah usaha untuk memindahkan muatan  uji dari  tempat ang jauh tak terhingga ke suatu titik yang berjarak r dari muatan uji. Dirumuskan:

01

dengan
Ep= energi potensial (J)

qo= muatan sumber (C)
q  = muatan uji (C)
r  = jarak dua muatan (m)

b. Potensial Listrik (V)
Potensial listrik adalah usaha untuk memindahkan muatan positif sebesar 1 satuan dari tempat  tak terhingga ke titik itu, dirumuskan:

01

Potensial antara A dan B sering disebut sebagai beda potensial

Contoh Soal
Sebuah proton dilepas dari keadaan diam kedalam medan listrik 2.104
V/m arah sumbu X. Proton bergerak dari titik P dan Q yang berjarak 0,1 m.
a. hitung perubahan potensial listrik antara P dan Q.
b. hitung perubahan energi potensial proton selama menempuh jarak tersebut.

01

01

6. Kuat Arus Listrik
Kuat arus listrik adalah banyaknya muatan yang mengalir melalui suatu penampang konduktor tiap detik.

01

1 Ampere adalah besarnya kuat arus listrik di suatu titik penghantar yang dilewati muatan 1 coulomb tiap detik.

7. Kapasitor
Bila kedua konduktor yang bentuknya sebarang dan netral, dihubungkan dengan sebuah baterai hingga timbul beda potensial V di antara keduanya dan muatan masing-masing konduktor + q dan – q. Susunan kedua konduktor disebut kapasitor.
Hasil eksperimen menunjukkan bahwa muatan kapasitor sebanding dengan beda potensial kedua konduktor.

q ∼ V

q  = C . V

dengan C adalah kapasitas kapasitor dengan  satuan farad. Satuan farad diambi l dari nama Michael Faraday, tokoh yang mengembangkan konsep kapasitas. Satuan yang lebih kecil dan sering digunakan adalah µFdan pF.

1 µF=10-6  F

1 pF = 10-12  F

a. Bentuk kapasitor
1)  Kapasitor kertas (besar kapasitas 0,1 F)
2)  Kapasitor elektrolit (besar kapasitas 105
pF)
3)  Kapasitor variabel (besar kapasitas bisa diubah-ubah dengan ni la i kapasi tas maksimum 500 pF)

b. Fungsi kapasitor
1) Memilih frekuensi pada radio penerima (tuner).
2) Meratakan fluktuasi tegangan dari keluaran catu daya (adaptor).
3)  Memisahkan arus bolak-balik dari arus searah (filter).
4) Mer edam loncatan bunga api da lam  rangkaian saklar dan sistem pengapian mobil/motor.
5) Menghemat daya listrik dalam rangkaian  lampu TL.
6) Sebagai catu daya cadangan ketika listrik PLN padam.

Contoh Soal
Jika suatu kapasitor yang mempunyai kapasitas 20 pF dihubungkan dengan baterai 3 Volt. Hitunglah muatannya!

01

c. Kapasitor Keping Sejajar
U n t u k me n e n t u k a n k a pasi tas keping sejajar, harus dihitung dulu kuat medan listrik yang ditimbulkan oleh keping konduktor  l a lu g u na ka n hu k um Gauss.

01

Dengan muatan keping kapasitor terbesar di

permukaannya permukaan Gauss, seperti gambar di atas. Fluks netto yang terdapat pada ruang ini adalah

01

01

dengan C= kapasitas keping sejajar (C)
A= luas keping kapasitor (m2 )
d= jarak antara kedua keping (m)

Contoh Soal
1. Jika suatu kapasitor yang mempunyai kapasitas 20 pF dihubungkan dengan baterai 3 volt. Hitunglah-muatannya!

01

Berapa kapasitas suatu kapasitor keping sejajar yang mempunyai luas 50 cm2 . Jarak antara 2 keping kapasitr itu 2 cm.

01

d. Dielektrik
Adalah bahan bukan konduktor, contoh dielektrik antara lain karet, kaca, dan kertas. Sewaktu dielektrik disel ipkan antara dua keping kapasitor maka kapasitas kapasitor akan naik.

01

01

Contoh Soal

01

e. Energi Kapasitor (W)

Usaha yang dilakukan untuk mengisi muatan sama dengan energi potensial kapasitor. Energi yang tersimpan dalam sebuah kapasitor.
Dirumuskan:

01

Hitung energi sebuah kapasitor yang bermuatan 200 pF ketika di antara kepingnya diberi potensial 200 V?
Pembahasan:

01

8. Susunan Kapasitor
Seri
Rumus yang berlaku

01

01

b. Paralel

01

01

Contoh Soal
Hitung kapasitor pengganti di antara titik a dan b dalam gambar berikut.Semua kapasitor nilainya 1 µF.

Kerjakan latihan soal di bawah ini.

Welcome to your Latihan Listrik Statis

Empat buah benda bermuatan listrik yaitu P, Q, R, dan S. P menarik Q, dan Q menarik S dan S menolak R. Jika  S bermuatan positip maka ..........
Besar gaya listrik antara dua muatan titik adalah F. Jika jarak keduanya dijadikan dua kali semula, gaya listrik keduanya akan menjadi ...........
Dua keping logam sejajar diberi muatan listrik yang sama besar dan berlawanan tanda. Kuat medan listrik diantara dua keping itu adalah .......
Contoh peristiwa listrik statis adalah ............
Terdapat empat buah bola A,B, C, dan D terletak segaris dan terpisah,pada jarak tertentu.Bola A menarik bola C, bola C menarik bola D sedangkan bola D menarik bola B. Jika di B muatan listrik (+), maka muatan bola yang lain adalah... .
Berikut ini merupakan sifat-sifat muatan listrik, kecuali
Sebuah muatan q= 10 µC, berada dalam medan litrik E =500 N/C. Gaya Coulomb yang bekerja pada muatan tersebut adalah
Bagian atom yang bermuatan negatip adalah  ...
Penggaris plastik bila digosok dengan kain woll akan bermuatan negatip sebab ........
Sebuah elektron bergerak dengan kecepatan tetap yang tegak lurus pada arah kuat medan
listrik E, akan mengalami gaya yang arahnya ...
Suatu muatan listrik  4µC diletakkan pada jarak 30 cm dari rnuatan. 16 µC. Letak titik yang kuat medan listriknya nol adalah......
Satuan muatan listrik dalam sistem international adalah ...
Dibawah ini adalah material yang paling besar memiliki konstanta dielektrik yaitu.....
Untuk memperoleh kapasitor pengganti yang besar, maka kapasitor dipasang secara ....
Kapasitansi suatu keping sejajar yang bermuatan adalah ......
Sebuah kapasitor keping sejajar berisi udara dengan kapasitas Co dihubungkan dengan sumber tegangan V. Apabila ruang diantara kedua keping kapasitor diisi dengan mika, maka besaran yang tidak berubah adalah ......
Dua buah muatan saling berdekatan dengan besar muatan masing - masing 40 microcoulomb dan - 30 mikrocoulomb dengan jarak pisah 4 cm. Berapakah besar gaya pada muatan masing  masing .
Kapasitor 2F memiliki beda potensial 15 V dihubungkan paralel dengan kapasitor 4F yang beda potensialnya 30 V dengan menghubugkan ujung-ujungnya, maka potensial gabungannya menjadi .....
Dua buah muatan saling berdekatan dengan besar muatan 40 mikrocoulomb dan - 30 mikrocoulomb dengan jarak pisah 4 cm. Berapakah besar gaya pada muatan masing - masing .