Dinamika Rotasi

Momen Inersia Setiap benda yang  bergerak memiliki memiliki energi kinetik, baik bergerak secara rotasi dan translasi. Pada gerak rotasi berlaku energi kinetik : rs01 Sedangkan pada gerak rotasi berlaku persamaan berikut : rs02 Energi kinetik titik dapat dituliskan dalam bentuk persamaan : rs03 Sedangkan energi total yag terdapat pada benda adalah :

rs04

Persamaan di atas menyatakan energi kinetik rotasi total pada benda. Berdasarkan persamaan di atas besaran yang selalu konstan adalah ω. Besaran yang menunjukkan resistensi benda terhadap gaya yang menyebabkan benda melakukan gerak rotasi dinamakan torsi. yang dapat dirumuskan sebagai berikut :

I = m r2

Keterangan :

I = momen inersia (Kg.m²)

m = massa benda (Kg)

r = jarak titik benda ke sumbu rotasi (m)

Tabel momen inersia beberapa benda tegar

rs05

Contoh soal : Sebuah benda berbentuk cincin homogen memiliki jari – jari  2 m dan massa 10 Kgmemiliki sumbu putar pada titik pusat lingkaran cincin Momen Gaya (Torsi) Jika sebuah gaya  F sebuah benda dengan vektor posisi r terhadap titik asal , maka pada benda itu bekerja sebuah torsi (τ ). Momen gaya atau torsi adalah penyebab suatu benda mengalami perubahan gerak rotasi .  Atau ditulis dengan persamaan :

τ = r x F

Keterangan :

τ = Momen gaya / Torsi (N m)

r = lengan gaya (m)

F = gaya (N)

Untuk gaya yang membentuk sudut θ terhadap lengan gaya , maka persamaan torsi menjadi :

τ = F r sin θ

Untuk arah gaya yang searah dengan arah jarum jam maka torsi akan bernilai pisitif sedangkan jika arah gaya berlawanan dengan arah jarum jam maka torsi akan bernilai negatif.

Contoh soal :

Perhatikan gambar berikut :

rs06

 Perhatikan gambar di atas! Pada batang AC yang massanya diabaikan bekerja 3 gaya yang besar dan arahnya seperti pada gam- bar. Tentukan momen gaya total terhadap: a. titik A    . b. titik B

Diket :

F1 = 10 N, F2 = 10 N, F3 = 10 N

rab = 4 cm , rbc = 4 cm

θ1 = 30° , θ2 = 30° , θ3 = 90°

Ditanya : a. τA ……. ?. b.  τB…… ?

Jawab :

a.  τA = τ1 + τ2 + τ3 τA = (F1 . sin 30°. 0) + (F2 . AB . sin 30°) – (F3 . AC . sin 90° τA = 0 + 20 – 80 = -60  Ncm b.  τB = τ1 + τ2 + τ3 τB = (F1 . AB sin 30° . 0) + (F2 . 0) – (F3 . BC . sin 90°) τB = 20 + 0 – 40 = -20  Ncm

Kesetimbangan Benda Tegar Syarat Kesetimbangan Benda tegar Sebuah benda dikatakan mengalami kesetimbangan jika memenuhi dua kesetimbangan : a. Kesetimbangan translasi  jika resultan gaya – gaya yang bekerja sama dengan nol (Σ F = 0 ) b. Kesetimbangan rotasi .  Jika  resultan torsi yang bekerja pada benda sama dengan nol (Σ τ = 0 ) Jika kedua syarat ini dipenuhi oleh sebuah benda maka benda dikatakan mengalami kesetimbangan benda tegar. Contoh soal : Perhatikan gambar di bawah ini : rs07 Gambar di atas melukiskan sebuah benda yang beratnya 300 N digantung dengan tali AB dan BC. Dalam keadaan setimbang hitung gaya tegang tali AB dan BC. Diketahui :   rs08 w = 300 N Ditanya : a. gaya tegang tali AB     b. gaya tegang tali BC Jawab : rs09 rs10 rs11

Hubungan Antara Torsi dan Percepatan Anguler

Perhatikan pada sebuah pintu, jika daun pintu dikenai gaya baik gaya tarik maupun gaya dorong maka pintu akan tertutup ini menunjukkan bahwa ada torsi yang bekerja pada pintu, sebaliknya jika sumbu putar pintu atau engsel yang dikenai gaya berarpapun besarnya pintu tidak akan menutup. Terdapat hubungan antara percepatan linier dengan percepatan anguler yaitu :

a = α r

τ = m (α r) r = mr² α

τ = I α

 Dari persamaan di atas dapat dijelaskan yaitu setiap titik yang berotasi memiliki kecepatan dan percepatan inier yang berbeda tergantung jarak titik terhadap sumbu putar tetapi kecepatan dan percepatan angulernya besarnya selalu sama.

Momentum Sudut

Momentum sudut menyatakan tingkat kesukaran untuk menahan gerak rotasi suatu benda tegar. Besar momentum sudut diberikan oleh persamaan berikut :

L = I ω

L = momentum sudut (Kg. m²/s)

I = momen inersia (Kg m² )

ω = kecepatan sudut (rad / s)

Jika benda atau sistem tidak mengalami gaya eksternal , maka berlaku Hukum kekekalan Momentum sudut

 L awal = L akhir 

Energi Kinetik Rotasi

Untuk benda bergerak rotasi , memiliki energi kinetik yang berhubungan dengan gerak benda , yang disebut dengan energi kinetik rotasi.

Besarnya energi kinetik rotasi diberikan oleh persamaan berikut :

EK = ½ . I.ω²

Keterangan :

EK = energi kinetik rotasi ( Joule)

I = momen inersia (Kg m² )

ω = kecepatan sudut (rad/s)

Energi Kinetik Benda Menggelinding

Untuk benda menggelinding selain gerak berputar benda mengalami gerak translasi , akibatnya benda memiliki energi kinetik rotasi dan energi kinetik translasi.

EK = EKtran + EK rot = ½ m v2 + ½ I ω2

Keterangan :

EK = energi kinetik (joule)

EKtran = energi kinetik translasi (joule)

EK rot= energi kinetik rotasi (joule)